Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) por Sebastian Raschka

July 18, 2019

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) de Sebastian Raschka está disponible para descargar en formato PDF y EPUB. Aquí puedes acceder a millones de libros. Todos los libros disponibles para leer en línea y descargar sin necesidad de pagar más.

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition) por Sebastian Raschka
Titulo del libro : Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition)
Fecha de lanzamiento : September 20, 2017
Autor : Sebastian Raschka
Número de páginas : 624
Editor : Packt Publishing

Sebastian Raschka con Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition (English Edition)

Key Features

  • Second edition of the bestselling book on Machine Learning
  • A practical approach to key frameworks in data science, machine learning, and deep learning
  • Use the most powerful Python libraries to implement machine learning and deep learning
  • Get to know the best practices to improve and optimize your machine learning systems and algorithms

Book Description

Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis.

Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library.

Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world.

If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn.

What you will learn

  • Understand the key frameworks in data science, machine learning, and deep learning
  • Harness the power of the latest Python open source libraries in machine learning
  • Explore machine learning techniques using challenging real-world data
  • Master deep neural network implementation using the TensorFlow library
  • Learn the mechanics of classification algorithms to implement the best tool for the job
  • Predict continuous target outcomes using regression analysis
  • Uncover hidden patterns and structures in data with clustering
  • Delve deeper into textual and social media data using sentiment analysis

Table of Contents

  1. Giving Computers the Ability to Learn from Data
  2. Training Simple Machine Learning Algorithms for Classification
  3. A Tour of Machine Learning Classifiers Using Scikit-Learn
  4. Building Good Training Sets - Data Preprocessing
  5. Compressing Data via Dimensionality Reduction
  6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning
  7. Combining Different Models for Ensemble Learning
  8. Applying Machine Learning to Sentiment Analysis
  9. Embedding a Machine Learning Model into a Web Application
  10. Predicting Continuous Target Variables with Regression Analysis
  11. Working with Unlabeled Data - Clustering Analysis
  12. Implementing a Multilayer Artificial Neural Network from Scratch
  13. Parallelizing Neural Network Training with TensorFlow
  14. Going Deeper - The Mechanics of TensorFlow
  15. Classifying Images with Deep Convolutional Neural Networks
  16. Modeling Sequential Data using Recurrent Neural Networks

Los más vendidos Libros Todos deberíamos ser feministas (Literatura Random House) Pre-suasión: Un método revolucionario para influir y persuadir (CONECTA) El peligro de la historia única (Literatura Random House) Querida Ijeawele. Cómo educar en el feminismo (Literatura Random House) WOLFPACK: How to Come Together, Unleash Our Power and Change the Game Cambiemos el mundo: #huelgaporelclima (NARRATIVA) El arte de presentar: Cómo planificar, estructurar, diseñar y exponer presentaciones (Sin colección) Art Matters Semantics (Introducing Linguistics) TED Talks: The official TED guide to public speaking Esto es agua: Algunas ideas, expuestas en una ocasión especial, sobre cómo vivir con compasión (Literatura Random House) Cómo Hablar y Presentar en Público: Consejos que funcionan desde el primer minuto Así se habla: Claves para ser un buen comunicador Ted Talks Provost Gary : 100 Ways to Improve Your Writing (Mentor Series) ANÉCDOTAKES Five Stars: The Communication Secrets to Get from Good to Great World-building (Science fiction writing series) LANGUAGE HACKING FRENCH (Learn How to Speak French - Right Away): Enhanced Ebook (English Edition) Cómo Hablar y Presentar en Público: Consejos que funcionan desde el primer minuto Obama's Secrets: How to Speak and Communicate with Power and a Little Magic (English Edition) Todos deberíamos ser feministas El orador (El Libro De Bolsillo - Clásicos De Grecia Y Roma) La voz sí que importa (Gestión del conocimiento) Manual de debate (Manuales) The Quick and Easy Way to Effective Speaking Introducing Multimodality WOLFPACK: How to Come Together, Unleash Our Power and Change the Game (English Edition) MARKETING POLÍTICO De tú a tú - Libro + CD (Ele - Texto Español) Oratoria con PNL: Aplicación de la Inteligencia Emocional y la Programación Neurolingüística para Oradores (PNL para Profesionales) Teoría de la argumentación jurídica: La teoría del discurso racional como teoría de la fundamentación jurídica (Derecho & Argumentación nº 1) How to Write A favor y en contra: El libro del debate (Educación y Pedagogía) Syntactic Structures Analysing Discourse: Textual Analysis for Social Research ¿Me hablas a mí?: La retórica, de Aristóteles a Obama (Pensamiento) The Quick and Easy Way to Effective Speaking An Introduction to Word Grammar Paperback (Cambridge Textbooks in Linguistics) El peligro de la historia única El arte de hablar. Manual de retórica práctica y de oratoria moderna (ZAPPC2) Life Advanced: Combo Split B Public Speaking: What Amazing Nonsense You Are Talking! (English Edition) Metadiscourse: Exploring Interaction in Writing (Continuum Discourse) Make Good Art The View From The Cheap Seats Querida Ijeawele. Cómo educar en el feminismo Speaking Your Mind in 101 Difficult Situations Aprender a hablar en público hoy: Cómo cautivar y convencer por medio de la palabra (Empresa y Talento) Las claves de la argumentación (Ariel Letras)